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Abstract

High Occupancy Toll (HOT) lanes that use dynamic pricing to manage congestion and
generate revenue are increasingly popular but poorly understood. In this paper we
estimate the behavioral response of drivers to dynamic pricing in a HOT lane. The
challenge in estimation lies in the simultaneity of price and demand: the structure
of dynamic tolling ensures that prices increase as more drivers enter the HOT lane.
Prior research has found that higher prices in HOT lanes increase usage. We find that
after controlling for simultaneity arising from autocorrelation HOT drivers instead
respond to tolls in a manner consistent with economic theory. The average response
to a 10% increase in the toll is a 2% reduction in usage. Drivers primarily value travel
reliability over time savings, although there is heterogeneity in the relative values of
time and reliability based on time of day and destination to or from work. The results
highlight the importance of both controlling for simultaneity when estimating demand
for dynamically priced toll roads and treating HOT lanes with dynamic prices as a
differentiated product with bundled attributes.
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nomic behavior; congestion management; high occupancy toll lanes
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1 Introduction

Road transportation comprises a substantial proportion of the United States economy. The

vast majority of infrastructure is owned, maintained, and operated by local, state, or federal

agencies. According to Winston (2010) in 2007 American consumers spent over $1 trillion

dollars on gasoline and vehicles. In metropolitan areas road congestion led consumers to

purchase 2.9 billion additional gallons of fuel and spend 5.5 billion hours sitting in traffic

(Schrank et al., 2012). These costs are likely lower bounds due to unpriced congestion ex-

ternalities for local air pollution (Currie and Walker, 2011; Gibson and Carnovale, 2015),

carbon emissions (Weitzman, 2009), and increased sprawl (Anas and Rhee, 2006). Despite

the enormous annual cost of traffic congestion most roads do not have even the simplest

form of congestion pricing. Combating congestion in the short run by increasing capacity

is challenging due to strained transportation budgets such as the perennial projected insol-

vency of the Highway Trust Fund (Kirk and Mallett, 2013). Furthermore, according to the

fundamental law of highway capacity (Downs, 1962, 2004; Duranton and Turner, 2011), the

long run elasticity of road supply is equal to one - meaning that any increases in supply

will be met by equal increases in demand. Based on these facts, implementing appropriate

congestion pricing has the potential to produce large welfare gains.

One particular example of congestion pricing that is gaining traction is the High Oc-

cupancy Toll (HOT) lane, where High Occupancy Vehicles (HOV) travel without cost and

Single Occupancy Vehicles (SOV) are charged an access toll.1 From an engineering perspec-

tive redistributing cars from congested general-purpose (GP) lanes to free-flowing HOV lanes

can reduce congestion delays and associated externalities (Dahlgren, 2002). The toll, often

varying by time of day or traffic conditions, also generates valuable revenue for local and

state agencies. Both aging infrastructure and diminished revenue from gas taxes, declining

in real terms since 1993, make this potential revenue a valuable part of infrastructure bud-

1The definition of an HOV varies by location and roadway, but all HOV require at least two occupants
and some require three or more.
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gets. Furthermore, HOT lanes are politically palatable compared to unpopular uniform tolls

because GP lanes are left untolled, maintaining a free alternative for low income or cost-

sensitive drivers. These characteristics of HOT lanes in theory can lead to broad welfare

gains (Safirova et al., 2004). However, there remain concerns over equity of access: wealthy

drivers can avoid congestion while others must sit in traffic, leading to HOT lanes being

disparagingly termed ‘Lexus Lanes’.

While HOT lanes are a popular form of managing valuable public roadways,2 there is

relatively little empirical economic research on the behavioral response of drivers to HOT

implementation. Since HOT lanes often have dynamic prices that adjust to congestion the

variation in price, plus the presence the free GP lanes as a veritable substitute, presents an

opportunity to uncover how drivers respond to congestion management.

Our primary contributions are to generate empirical estimates for the price elasticity of

demand and calculate the value of time and reliability on dynamically priced HOT lanes

using micro-level data on SR167, in the Seattle-Tacoma metro area of Washington State.

While most economists are not surprised by a downward sloping demand curve, the existing

empirical literature on dynamically priced HOT lanes estimates a positive price response.

Liu et al. (2011b) recovered coefficient values on price in a logit framework ranging from

0.214 to 0.600. More recent research by Janson and Levinson (2014) also found a positive

effect of price on HOT usage with elasticities ranging from 0.03 to 0.85. In addition to

identifying a more plausible demand elasticity we show that failure to properly identify the

behavioral response to price produces invalid estimates of the value of time and reliability.

The most common explanation put forth for the positive effect of price on HOT demand

is that price acts as a signal of future congestion (Liu et al., 2011b; Janson and Levinson,

2014), and therefore higher prices are associated with greater time savings. This explana-

tion confounds expectations about time savings with the pure behavioral response to price.

2According to the Bureau of Economic Analysis the value of the stock of highways is equal to $3,264.5
billion. Data were accessed from Table 7.1B. Current-Cost Net Stock of Government Fixed Assets on
1/13/2014 - http://www.bea.gov/iTable/index.cfm
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Ceteris paribus, consumers prefer to purchase the same amount of time savings at a lower

price. Not accounting for expectations of time savings introduces omitted variable bias into

the coefficient on the pure price effect. A more plausible explanation for a positive price

elasticity is that previous work did not adequately control for the simultaneity of price and

congestion in dynamic tolling algorithms - as more drivers enter the managed lane conditions

deteriorate (speed decreases) and the tolls increase, leading to a positive correlation between

price and usage. Since conditions, and thus prices, are persistent there is a high degree of

autocorrelation that leads to biased estimates.

Without formally addressing the problems of simultaneity and omitted variable bias in

the setting of dynamic tolling algorithms it is premature to conclude that HOT usage violates

a central tenet of economic theory. Our identification relies on a first-differences approach

that overcomes the simultaneity of price and quantity that generates the positive demand

response for Liu et al. (2011b). We also control for travel reliability and expectations of time

savings using micro-level data, unlike Janson and Levinson (2014) who examine aggregate

differences in usage after experimental changes in the toll rates.

Contrary to the previous literature that finds a positive demand response we estimate

price elasticities ranging between −0.13 and −0.24, with a preferred estimate of −0.21. This

is the first estimate of a negative price elasticity (to our knowledge) for dynamically priced

HOT lanes, which are a critical part of many cities’ future transportation management plans.

Our estimation also allows us to calculate the welfare gains associated with decreased travel

time and increased travel reliability for HOT lane users. In the base specification the total

welfare gains are approximately $2.3 million. Though the consumer welfare gains may seem

small relative to aggregate transportation spending, the magnitude must be considered in the

appropriate context. The gains to drivers are roughly equal to the total revenue generated

from the project during the sample period. The welfare implications are significant when

weighed alongside plans to expand HOT lanes both locally and nationally.

Our second contribution is to jointly estimate VOT and VOR for a dynamically priced
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HOT lane. Prior studies (Brownstone et al., 2003; Liu et al., 2011b; Burris et al., 2012; Janson

and Levinson, 2014) of dynamically priced HOT lanes construct a simple estimate of the

VOT by dividing the toll by the realized time savings. This method produces unrealistically

high estimates of VOT that can exceed $100/hr (Burris et al., 2012; Janson and Levinson,

2014), whereas the U.S. Department of Transportation uses 50% of median household hourly

income for the VOT for personal travel, which equates to roughly $14 for Seattle Metro.3

Simply dividing the toll by time savings is problematic because the toll contains a bundle

of attributes including improved reliability.4 Though some of the authors (Burris et al.,

2012; Janson and Levinson, 2014) mention these limitations there are no large scale revealed

preference studies that jointly estimate VOT and VOR for HOT lanes.5

The joint estimation of VOT and VOR is axiomatically linked to the challenge of properly

identifying the demand response for HOT lanes with dynamic pricing. Without identifying

the demand response, which represents the (negative) marginal utility of income, it is im-

possible to estimate the marginal rates of substitution between time savings and money and

reliability and money. This leads to severe problems in the simple methods for estimating

VOT on HOT lanes that assigns all of the benefits associated with the HOT lane to time

savings. Devarasetty et al. (2012) show in a stated preference study that VOR can be larger

than VOT on HOT lanes, indicating that most of the simple revealed preference VOT es-

timates are too large. Our results are even more stark; drivers vastly value reliability over

time savings on the HOT lane. We estimate that VOT is only $3/hour for the preferred

specification while VOR is over $23/hour. In aggregate 80% of the benefits to HOT users are

from increased reliability, though time savings is relatively more important for some subsets

of the roadway.

In addition to estimating demand elasticity and welfare gains this article links the theoret-

3Sources are from (U.S. Department of Transportation, 2014; Bureau of Labor Statistics, 2014).
4There are other attributes other than VOT contained in the purchase of HOT access such as the mental

stress from being in traffic, particularly when watching cars pass by in the free-flowing HOT lane.
5Carrion and Levinson (2013) estimates value of reliability for three different lanes using GPS data, but

the sample only contains 18 observations.

5



ical economic literature on HOT lanes with an empirical example that can help parameterize

the theoretical models. While theory suggests wide benefits from HOT lanes in the presence

of driver heterogeneity (Dahlgren, 2002), in practice welfare impacts depend on the distri-

bution of value of time (VOT) and value of reliability (VOR) (Small and Yan, 2001; Small

et al., 2005), trends in commuting demand, tolling structure (Chung and Recker, 2011) and

distortions in connected markets (Parry and Bento, 2002). Konishi and Mun (2010) show

that converting from an HOV to an HOT lane has ambiguous welfare effects, in part due to

discouraging carpooling. Many of the models used in these studies include price elasticity

as a parameter without providing support for its magnitude and direction.

While we focus on estimating driver demand for a HOT lane in a specific location,

the overall context is critical in an attempt to generalize the welfare results. Li (2001)

attempts to explain the determining characteristics of HOT use on SR91 in California by

analyzing survey data. His findings indicate that income, occupancy, trip purpose and age

are important factors. From a theoretical perspective Parry (2002) conducts an analysis

of congestion tax alternatives using simple models with three assumptions: (1) equate the

marginal social cost of trips both between peak and off-peak travel (2) equate the marginal

social cost across travel modes at a given point in time, and (3) sort high and low time-cost

drivers by lane. He finds that, given driver time cost heterogeneity, a two lane road with

tolls to separate high and low cost users achieves the maximum efficiency, while a uniform

toll across both lanes achieves 90% of the optimum by ‘spreading out the commute of lower

time cost commuters to before and after the toll’. He notes that single-lane tolls are more

politically feasible given the ‘hostility’ from motorists to congestion taxes. Parry and Bento

(2002) partially extend this analysis by incorporating distortions into the welfare calculations

of a congestion tax. They find that the distortions can cause ‘substantial’ changes to welfare

that must be considered as part of a policy change.

According to these findings HOT lanes probably do not achieve the social optimum since

there is still a lane with unpriced congestion externalities. However, dynamic pricing of a
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HOT lane shits policy towards internalizing congestion externalities by raising the private

costs as congestion in the tolled lane increases, as well as allowing drivers with different levels

of VOT and VOR to sort appropriately. This is consistent with Dahlgren (2002) who models

the addition of different lane types to an existing transportation environment: ‘mixed’ lanes

perform better than HOV lanes when ‘initial maximum delay is very high but the proportion

of HOVs is not sufficient to fully utilize an HOV lane’.

Our estimate of a negative price response to dynamically priced HOT lanes establishes

in the empirical literature that drivers do indeed adhere to theoretical predictions of HOT

lanes and dynamic pricing. This has important policy implications: if the demand for HOT

lanes is not downward sloping then the entire premise of dynamically priced HOT lanes

as a congestion management mechanism is fatally flawed. Given a positive price response

higher prices will induce higher usage, and the cycle will continue until the lanes reaches

its performance constraint.6 Our estimates not only agree with basic economic theory but

also provide empirical support for using dynamic pricing to manage congestion and provide

elasticity estimates to help optimize toll rates.

The remainder of the paper is organized as follows. The next section discusses the

project setting and the data utilized in the analysis. Section 3 describes the econometric

methodology. The results are presented in Section 4, and Section 5 offers concluding remarks

and discussion. Details on the econometric specification tests, as well as additional tables

and figures are available in the Appendix.

6In our setting it was necessary to restrict HOT Lanes to HOV traffic between 0.33% and 0.14% of the
time during toll hours. The variance arises from measuring closure rates at the road segment level.
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2 Background & Data

2.1 Project Setting

Our project setting is State Route 167 (SR167) in the greater metropolitan area of Seattle,

Washington. It is a connector road between the communities of Renton and Auburn south

of Seattle and the I405 freeway, which then feeds either into Seattle via I5 or Bellevue via

I405. Instituted in May 2008 by WSDOT, the HOT lanes pilot project converted a ten mile

stretch, in both directions, of SR167’s HOV lanes into HOT lanes and continues to operate to

this day (Figure 1). This location was selected due to severe congestion in the GP lanes and

excess capacity in the existing HOV lane. At the onset of the project the objective was to fill

the excess capacity in the HOV lane by allowing some SOVs to purchase access. Congestion

not only causes delays but reduces the total carrying capacity of a road, so shifting cars

from the GP to the HOV lane can conceivably increase the total throughput in both lanes

(Dahlgren, 2002).

Figure 1: SR167 HOT Lanes Map, (WSDOT, 2013)
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The primary role of the toll is to regulate access to the HOT lane and maintain a mini-

mum level of service, thereby not discouraging use of the lane by HOV and transit. Prior to

implementation the GP lanes averaged 30-35 miles per hour during congested periods, with

a speed limit of 60 mph, resulting in delays of roughly 50% relative to free flow. Prior to

converting to HOT lanes the HOV lanes experienced little to no congestion (Wilbur Smith

Associates, 2006). As of 2012 WSDOT attributes the HOT lanes with a host of desirable

outcomes including: decreased congestion in the GP lanes, decreased peak congestion, main-

tained free flow in the HOT lanes, increased capacity of the corridor, increased safety and

revenue neutrality (WSDOT, 2012). The pilot program, originally set to expire in 2012, has

been extended through 2016 and the expansion of HOT lanes to other routes is underway.

Assessing the willingness to pay for toll lanes is a requirement to determining toll levels

that meet traffic volume priorities. Problematic assumptions by WSDOT in terms of the

demand for HOT usage manifested in poor revenue forecasts as seen in Figure 2. Although

revenue generation was not the primary objective for WSDOT, it is clear that there was

a fundamental misunderstanding of the trajectory of usage and the driver response to the

introduction of a tolled alternative lane.7

Along the ten mile stretch that comprises our project setting, SR167 has three north-

bound lanes and three southbound. In each direction there are two GP lanes with the third

lane reserved for HOT use. HOVs require no additional equipment to use the lane, but SOVs

that use the HOT lane must have purchased and installed a WSDOT ‘Good to Go’ (GTG)

pass. Installed on either the license plate or an in-car windshield attachment, the pass is

a transponder that registers a vehicle’s passage and collects the posted toll. Transponder

detectors are installed at ‘gates’ that are the only legal entry and exit points for the HOT

lane. There are six gates in the northbound direction and four gates southbound, with a

double white line separating the GP and HOT lanes between gates.

GTG passes can be purchased online or at local retailers. The accounts are ‘prepaid’ in

7Other factors including a general decrease in travel demand due to the global financial crisis also con-
tributed to the erroneous forecast.
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Figure 2: SR167 Revenue: Forecasts vs Actual, (Wilbur Smith Associates, 2006)

that tolls are deducted upon use from funds that are preloaded into the account. Account

holders can either automatically or manually replenish the balance. Users can choose be-

tween credit cards and bank accounts and services are provided online, over the phone or in

person. The GTG passes can be used for all tolling facilities operated by WSDOT, including

the SR520 Bridge and the Tacoma Narrows Bridge in addition to the SR167 HOT lanes.

Both individuals and businesses can purchase GTG passes. While WSDOT does track both

commercial and individual accounts, individuals with many users (a large family) could also

purchase a commercial pass. WSDOT could not provide us with separate or tagged samples

of usage broken out by account type so we were unable to uncover what effect this has on

our estimates. However, purchasers of HOT access who do not bear the burden of the price

would be expected to decrease our estimates of price sensitivity, and so we consider our

estimates to be lower bounds.

While we do not observe each unique driver in our HOT usage data we do have a summary

of those who use the HOT lane by zip code and frequency of use. One factor that impacts

HOT use is the penetration of GTG passes. The unique number of HOT users on SR167 has
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been rising steadily, from 21,623 unique drivers in 2008 to 38,025 in 2011.8 We also obtained

summary statistics for the frequency of use for individual drivers. We find that most drivers

use the HOT lane only sparingly. The mean annual number of tips is just under seventeen,

but the median is only two with a large number of drivers only paying once or twice in a

year. While we may expect there to be different behavior between frequent and infrequent

users, Liu et al. (2011a) find that the behavior is very similar between these two user classes.

We therefore are not concerned about the skewness of the frequency data.

2.2 Data

Our primary dataset consists of information collected by highway loop detectors and au-

tomated tolling systems.9 Loop detectors yield volume and occupancy (percentage of time

occupied) of individual lanes at five minute intervals is publicly available through the Wash-

ington State Transportation Center. Tolling data, obtained from the Washington State

Department of Transportation (WSDOT) through a public disclosure request, includes date

and time of toll collection, entry-exit gate combination and the price paid.

2.3 Loop Detectors

WSDOT maintains a network of loop detectors on SR167 both for traffic analysis and as

inputs to the tolling algorithm. We obtained 5 minute aggregated volume and occupancy

data from loop detectors along SR167 from the Washington State Transportation Center

(TRAC) based at the University of Washington. There are several challenges in generating

a viable dataset from the loop detector data. First we remove all observations that have a

data quality flag indicating infrastructure malfunction.10 Next we drop all observations on

8It should be noted that the HOT lanes were implemented in May 2008 so the 2008 figure is incomplete.
Likewise through the end of September 2012 the HOT had 29,623 unique paying users.

9Prior analysis also accounted for weather and gas price. Weather variables are reported hourly from
SeaTac airport, at a distance of 4.1 miles from SR167. Gas prices are the weekly average for the area of study.
In pursuing a first-difference estimation at the five-minute level these other controls vary too infrequently to
contribute.

10Of the 16,870,248 loop detector observations 4.8% were removed due to quality flags.
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weekends and holidays as these are not representative of normal commuting behavior. This

leaves us with a time series of volume and occupancy for all loop detectors on the route for

every valid five minute interval during our sample period. Speed is computed from volume

data based on Athol (1965)’s formula. Using imputed speed, TRAC also provides estimated

whole-route travel times for the northbound and southbound directions, divided into HOT

and GP, at five minute intervals.

2.4 HOT Tolls

The tolling algorithm is designed to determine the price at five minute intervals using data

from the HOT lane and ensuring a minimum speed of 45 mph in the HOT lane. The algorithm

compares the current speed and flow with an average of the previous four minutes. Ceteris

paribus when speed or flow is increasing (decreasing) the toll rate will decrease (increase).

We obtained the tolling algorithm without exact parameter values from WSDOT under the

condition that we not reproduce it, since it is proprietary to the consulting company that

designed it. Importantly for our study, the algorithm only incorporates HOT data and does

not consider traffic in the GP lanes. Additionally, while the toll at a given gate is based

upon data from loops around the gate, the toll may be overridden if downstream gates are

computing a higher toll. WSDOT provided anonymous transponder recordings from SR167

including time of day, amount charged, as well as entry and exit gate. The prevalent usage

pattern, in both directions, is to enter at the first gate and stay in the HOT lane until it ends

(NB1 to NB6 and SB1 to SB4; see Figure A.1). The next greatest usage is characterized by

entering at the second gate and staying through the end, etc. A small minority of drivers

pay the toll and exit before the HOT terminates. Figure A.2 in the Appendix displays the

toll rates by time of day and gate location.
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2.5 Survey

To capture demographic characteristics we obtained yearly surveys of SR167 HOT users

from WSDOT. The survey is sent to all email addresses attached to a GTG account that

have used the SR167 HOT lane at least once.11 It covers a broad range of topics including

questions about demographics and attitudes towards the HOT lanes.

We focus on the income of HOT users since previous research (Li, 2001) has identified

this as an important characteristic of use. Income is also a driver of VOT and will help put

the VOT and VOR results in context for generalizing the results. While the survey captures

the income information of some HOT users we are interested in the income distribution

of all HOT users and the income distribution of all SR167 users. To approximate these

distributions we use income at the ZIP code level from the 2010 US Census and weight by

the intensity of HOT use within each ZIP code. The weights represent the proportion of all

HOT users that came from a specific ZIP code. We assume that the spatial distribution of

HOT users and GP users are the same, and, since HOT users are more likely to come from

affluent ZIP codes, if we relax this assumption we can think of this income distribution as

an upper bound on the income of GP users. Figure 3 presents the income from the survey

of HOT users compared to our estimate of the income of GP users from the weighted census

data. It is clear that even the upper bound of GP users’ income is substantially lower than

the HOT users. This implies that any VOT and VOR estimates will be upper bounds and

that direct welfare effects from HOT usage are accruing to the wealthier segment of the

commuting population.

2.6 Travel Time and Reliability

To illustrate the difference in average travel time and reliability between the GP and HOT

lanes we plot the distribution of travel time over the course of the day in Figure 4 for both

the northbound and southbound routes. The travel times were computed by TRAC for every

11We do not claim that the survey is representative and use the results primarily for exploratory purposes.
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Figure 3: Differences in Income

Notes: Census data are weighted by ZIP code frequency of 167 GTG users, and may be considered an upper
bound of income. Survey data are from annual WSDOT surveys of HOT users.

five minute interval for both the HOT and GP lanes. The thick line represents the average

travel time at a given time of day and the shaded region is one standard deviation in travel

times at that time over all days in the sample. There are several noteworthy features in

Figure 4. First, the peak congestion periods are dramatic: there is a steep spike in traffic for

the GP lanes during the morning in the northbound direction and during the evening in the

southbound direction. The free flow rate, as evidenced by travel times in the middle of the

night, is approximately 10 minutes in either direction. On average the HOT lane maintains

close to free flow conditions throughout the day in the northbound direction and experiences

very minimal congestion during the evening peak in the southbound route. Comparing mean

HOT travel times to the average GP travel times during the peak commute shows that drivers

are saving roughly 3-6 minutes by paying for HOT access. For the overall sample drivers

saving 1.85 minutes on average by using the HOT lane.
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Table 1: Summary Stats

Statistic N Mean St. Dev. Min Max

Count 1,071,743 2.41 3.96 0 46
Price 1,071,743 0.68 0.44 0.50 6.50
SOV 1,071,743 102.78 38.85 0.00 209.00
GP Speed 1,071,743 53.52 11.18 5.00 70.00
Reliability 1,071,743 1.17 0.93 −0.00 5.31
Expected Time Savings 1,071,743 1.85 1.56 −2.16 13.55

Previous research by Small et al. (2005) suggests that reliability is also an important

determinant of the HOT use decision. The shaded region shows that one standard deviation

in travel times in the GP lane can often exceed 20 minutes during the commuting period.

There is little variation in travel times in the HOT lane, indicating that reliability is also a

key attribute of the good. We follow Small et al. (2005) in constructing a reliability measure,

estimating the median and 80th percentiles in travel-time savings for each 5-minute interval

throughout the day for both the GP and HOT lanes using quantile regressions. Coefficients

for northbound and southbound directions are estimated separately. The difference between

the fitted values for the 80th and 50th quantiles is a measure of dispersion that approximates

reliability for each lane. The reliability variable in the regression is the difference in reliability

between the GP and HOT lanes. Expected travel-time savings are estimated from the fitted

values of a linear regression of time savings on 5-minute fixed effects, HOV counts, and GP

speeds.12 This produces a forward thinking prediction of drivers’ expectation of travel time

savings when they make the decision to enter the HOT lane. Our specification assumes

drivers form their expectation of travel time savings from the HOT lane based on the time

of day and traffic conditions.

12Our specification is TTSaveit = β1HOVit + β2GPit +Dm + eit, where TTSaveit is realized travel time
savings, GPit is GP speed, HOVit is the count of HOV drivers in the HOT lanes, and Dm are fixed effects
for each 5-minute period in the day.
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Figure 4: Travel Time and Reliability
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3 Methodology

Our objective is to identify the pure behavioral response of toll prices on the demand for

purchasing access to the HOT lane. The structure of the tolling algorithm dictates that

prices increase as HOT speeds decrease and HOT volume increases. The changes in speed

and volume are computed every five minutes taking the difference between data at the five

minute mark and the average of the previous four minutes. For instance, conditions from

7:59-8:00 are compared to the average conditions from 7:55 through 7:59 to calculate the

price at 8:00-8:05. In this sense the price is not strictly endogenous since it is predetermined

for any driver by the conditions prior to their entry. However, traffic conditions exhibit a high

degree of persistence leading to autocorrelation in the variables of interest (see Figure 5).

Not accounting for such a high degree of autocorrelation results in biased coefficients.

The issue of simultaneity can be interpreted in a time series context as autocorrelation in

traffic patterns. A driver paying to enter the HOT lane will not influence the price that she

pays, nor will she influence the price of any other driver in her 5 minute interval. Rather,

as more drivers enter the price in the subsequent time interval increases. Therefore, without

autocorrelation we do not expect the error term to be correlated with HOT usage, since

the price is predetermined from the prior five minute interval. However, traffic is highly

persistent and unobserved factors in the previous five minutes are correlated with current

HOT usage, biasing the coefficient on price. We therefore first difference (FD) the data to

reduce the serial correlation (see Figure 5). The interpretation of differenced data is also

more attractive in the context of dynamic tolling. We know that both the toll and usage will

be high during periods of congestion, but what we hope to recover is how drivers respond to

changes in the toll rate. Increasing the toll as congestion increases is the central tenant of

dynamic congestion pricing and is critical to managing HOT lanes. Prior to estimation we

perform several test for unit roots adapted for time series data do not find unit roots in the

data. This allows us to estimate the first-difference (FD) equation using OLS. Details can

be found in Section A.3 in the Appendix.
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Figure 5: Price and Count ACF
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Notes: The autocorrelation function (ACF) of price and count and their respective first differences.

3.1 Econometric Specification

Our estimation equation takes the form

yit = βpit + θHOVit + γGPit + φE[TTsave|t] + λRt + ci + ht + dt + uit (1)

where the dependent variable, yit, is the count of SOVs in the HOT lane at gate i and time

t, and takes values y = {0, 1, 2, 3, . . . }. Our parameter of interest is β, the coefficient on

the displayed HOT price, pit. We also want to recover the VOT and VOR, the marginal

rates of substitution between time and money and reliability and money. VOT and VOR are

represented by the ratios −φ
β

and −λ
β

respectively. Estimating all the preference parameters

jointly presents a more reliable methodology for estimating VOT and VOR compared to
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simply dividing the toll by time savings, which is confounded with unobservables (Janson

and Levinson, 2014). We include the expected time savings (E[TTSave|t]) based on the

information available to drivers at time t as described in Section 2.6. Unlike Liu et al.

(2011b), who include realized travel time, we model this as an expectation based on the

expected difference in travel time since the actual time savings are unknown to the driver

when she makes the HOT purchase decision. Reliability (Rt) is the difference in reliability

between the GP and HOT lanes based on the reliability metric advocated in Small et al.

(2005). Additional controls include count of HOV users in the HOT lanes (HOVit) and the

speed in the GP lanes (GPit). We also include fixed effects for the gate of entrance (ci), hour

of day (ht), and day-of-week (dt). The idiosyncratic error term is represented by uit.

First-differencing equation 1 gives

∆yit = β∆pit + θ∆HOVit + γ∆GPit + φ∆E[TTsave|t] + λ∆Rt + ci + ht + dt + ∆uit (2)

where the coefficient of interest is β. We perform the first-differencing between time periods

on the same day and at the same gate. Fixed effects are not first-differenced because we want

to control for unobserved heterogeneity in the change in HOT usage by gate, day-of-week,

and time of day as advocated by Wooldridge (2003).

4 Results

Coefficient estimates for both the OLS and FD HOT counts are presented in Table 2. Stan-

dard errors in OLS models (columns (1) and (2)) are robust to heteroskedasticity and clus-

tered at the gate of entrance and the FD (columns (3) and (4)) are adjusted using a first-

difference robust variance matrix clustered at the gate of entrance (Wooldridge, 2010). The

OLS estimates are presented to show the impact of both simultaneity due to autocorrelation

and the omitted variable bias from not including expected travel time and reliability. Col-

umn (1) shows that in a simple OLS framework the price response is positive, significant,
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and reasonably large in magnitude.13 Simply controlling for travel time and reliability, as the

seen in column (2), vastly decreases the magnitude of the estimate of the demand response

but it is still positive and significant. Columns (3) and (4) show the results of the first-

differenced model that both produce a demand response that is negative and statistically

significant at the 1% level.

The preferred specification in column (4) estimates that a $1 increase in the price de-

creases HOT users by 0.737 within a 5 minute interval. This finding stands in contrast

to earlier research that identified a positive price response (Liu et al., 2011b; Janson and

Levinson, 2014). Transforming this to an elasticity at the average quantity and price yields

an estimated elasticity of −0.21. There is not a significant difference in the price response

when adding travel time and reliability in the first-difference model. As expected more HOV

drivers and higher GP speeds decrease SOV purchases of HOT access since both variables

decrease the benefits of the HOT lane relative to the GP lane. The point estimates of VOT

and VOR are $3.11 and $23.43 respectively indicating that drivers care more about reliabil-

ity than time savings when using the HOT lanes. VOT and VOR are investigated in more

detail in Section 4.3.

13Since the data in columns (1) and (2) are counts we also estimate count models including Poisson and
negative binomial that produce similar results and are available upon request.
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Table 2: First Difference OLS Regressions

OLS First-Difference

(1) (2) (3) (4)

Price 2.376∗∗∗ 0.484∗∗∗ −0.732∗∗∗ −0.737∗∗∗

(0.014) (0.013) (0.019) (0.019)
SOV 0.011∗∗∗ −0.002∗∗∗ −0.035∗∗∗ −0.035∗∗∗

(0.0001) (0.0001) (0.0002) (0.0002)
GP Speed −0.085∗∗∗ −0.027∗∗∗ −0.011∗∗∗ −0.010∗∗∗

(0.001) (0.001) (0.001) (0.001)
Reliability 1.208∗∗∗ 0.288∗∗∗

(0.009) (0.027)
E[TT Save] 0.759∗∗∗ 0.038∗∗∗

(0.006) (0.008)
Constant 7.158∗∗∗ 3.650∗∗∗ 0.278∗∗∗ 0.263∗∗∗

(0.042) (0.040) (0.013) (0.013)

Weekday FEs Yes Yes Yes Yes
Hour FEs Yes Yes Yes Yes
Gate FEs Yes Yes Yes Yes

Observations 1,071,743 1,071,743 1,056,997 1,056,997
Adjusted R2 0.403 0.529 0.039 0.039

Note: The dependent variable is the count of HOT users in a five minute interval. The dependent and all in-
dependent variables are in levels in columns (1) and (2) and first-differenced in columns (3) and (4). Standard
errors are robust to heteroskedasticity and clustered at the entry gate. ∗p<0.1; ∗∗p< 0.05; ∗∗∗p<0.01

4.1 Heterogeneity in Demand Elasticity

The price elasticity, as well as the VOT and VOR, depend on the features of the trip so

we investigate two important sources of heterogeneity: the time of day and trip direction.

Time of day is associated with congestion and also captures drivers on the traditional daily

commute to and from work. The peak period is defined as 6:00am-9:00am in the northbound

direction and 3:00pm-6:00pm in the southbound direction corresponding to the morning and

evening commutes.14 The heterogeneity with respect to route direction is motivated by the

argument that drivers face different incentive structures for utilizing the HOT lanes driving

to and from work.

Table 3 presents results of regressions that interact price, reliability, and expected time

savings with the variables of interest. Column (1) displays the base specification (column

14The peak period can be seen on the travel time graphs in Figure 4.
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(4) of Table 2) for reference. The elasticities for each subgroup based on the estimates are

presented in Figure 6 with bootstrapped 95% confidence intervals. Column (2) presents

interactions with dummies for the peak period and shows that the demand response is

greater during the peak period in levels. However, when converting these demand responses

to elasticities the peak and off-peak periods have similar elasticities, as shown in Figure 6.

The distinction between the point estimate and elasticities is in part due to more drivers

being on the the road during the peak period. Interactions with directions, presented in

column (3), show that drivers are more sensitive to the toll in the southbound direction.

This is intuitive because drivers may have more flexibility when returning home compared

to going to work. Unlike the peak/off-peak distinction, drivers are not only absolutely more

responsive in the southbound direction but also proportionally more responsive as revealed

by the elasticities for each direction in Figure 6. The next section discusses both base effects

of the value of time and reliability and issues of heterogeneity.
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Table 3: Heterogeneity by Gates, Congestion, and Direction
Base Congestion Direction Congestion & Direction

(1) (2) (3) (4)

Price −0.737∗∗∗

(0.019)
Price:Off-peak −0.559∗∗∗

(0.027)
Price:Peak −0.861∗∗∗

(0.027)
Price:NB −0.637∗∗∗

(0.025)
Price:SB −0.903∗∗∗

(0.031)
Price:Off-peak:NB −0.477∗∗∗

(0.032)
Price:Off-Peak:SB −0.714∗∗∗

(0.048)
Price:Peak:NB −0.764∗∗∗

(0.036)
Price:Peak:SB −1.015∗∗∗

(0.039)
Reliability 0.288∗∗∗

(0.027)
Reliability:Off-peak 0.180∗∗∗

(0.031)
Reliability:Peak 0.382∗∗∗

(0.042)
Reliability:NB 0.466∗∗∗

(0.037)
Reliability:SB 0.147∗∗∗

(0.037)
Reliability:Off-peak:NB 0.222∗∗∗

(0.032)
Reliability:Off-peak:SB 0.130∗∗

(0.057)
Reliability:Peak:NB 0.856∗∗∗

(0.078)
Reliability:Peak:SB 0.090∗

(0.049)
E[TT Save] 0.038∗∗∗

(0.008)
E[TT Save]:Off-peak −0.0002

(0.008)
E[TT Save]:Peak 0.130∗∗∗

(0.020)
E[TT Save]:NB −0.004

(0.011)
E[TT Save]:SB 0.103∗∗∗

(0.012)
E[TT Save]:Off-peak:NB −0.023∗∗

(0.011)
E[TT Save]:Off-peak:SB 0.029∗∗

(0.012)
E[TT Save]:Peak:SB 0.040

(0.025)
E[TT Save]:Peak:SB 0.359∗∗∗

(0.035)

Weekday FEs Yes Yes Yes Yes
Hour FEs Yes Yes Yes Yes
Gate FEs Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Observations 1,056,997 1,056,997 1,056,997 1,056,997
Adjusted R2 0.039 0.039 0.039 0.040

Note: Column (1) is the same regression as Column (4) of Table 2. Columns (2) and (3) show the interactions of price, time
savings, and reliability with a dummy for peak period and direction respectively. Column (4) shows the results of a regression
that interacts price, time savings, and reliability with both the peak dummy and the direction variable. There are no based
effects included so the coefficients represent marginal effects for the relevant subgroup. ∗p<0.1; ∗∗p< 0.05; ∗∗∗p<0.01
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Figure 6: Price Elasticities by Model
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Notes: The thick bars represent the mean estimates for average elasticity and the thin bars are bootstrapped
95% confidence intervals. The estimates are based on the price parameter as well as average quantity and
price in the relevant subsample for regressions in column (1) - (3) of Table 3.

4.2 Value of Time and Reliability

A simple estimate of the Value of Time (VOT) is just the toll divided by the realized time

savings. Though as stated above this measure produces unrealistically high VOT estimates

on dynamically priced HOT lanes.

V OT =
Toll

TTGOP − TTHOT

Before presenting the jointly estimated VOT and VOR from the regressions we show the

distribution of the simple VOT from SR167 in Figure 7. VOT is constructed by simply

dividing the toll by the difference in travel time between the GP and HOT lane for each
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Figure 7: Simple Value of time
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Notes: Simple VOT is based on toll and loop detector data. The red dashed line is the median and simple
VOT is curtailed at $1000/hour. The figure is curtailed at $100/hour to avoid showing the far right tail.

5-minute interval in the sample.15 The average VOT using the simple method is $38 dollar

per hour and is designated by the red dashed line in Figure 7.

Figure 8 presents the estimates of VOT and VOR defined as the ratio of the preference

parameters. It is important to note that this requires a negative coefficient on price in order

to obtain a valid estimate of the marginal utility of income defined as negative one times the

dis-utility of the toll. The estimates in Figure 8 are based on the regression models in columns

(1) - (4) of Table 3. Since VOT and VOR are nonlinear combinations of parameters Figure

8 reports the mean and 95% confidence interval from bootstrapping each regression model.

In models with interactions the VOT (VOR) is the ratio of the appropriate interactions for

both E[TT Save] (Reliability) and price. For example, the VOT for the peak period is the

ratio of coefficients on E[TT Save]:Peak and Price:Peak. Thus, Figure 8 represents variation

in both the preferences for time savings (reliability) and the sensitivity to price.

The main result is that VOR is vastly more important than VOT; in fact in several speci-

15All observations with negative time savings and time savings above $1000 are dropped.
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fications the VOT is insignificant. In the base specification the reliability ratio (VOR/VOT),

is 7.5 indicating that reliability is much more important in using the HOT lane than time

savings. These results suggest that the simple estimates of VOT on HOT lanes vastly overes-

timate the true VOT, and that much of the purchase decision is actually based on improved

reliability.

There is substantial heterogeneity in VOT and VOR. Northbound travelers greatly prefer

reliability to time savings, which may indicate the need to arrive at work at a specified

time. The peak VOT is statistically significantly larger than the base specification and the

reliability ratio falls to 2.5 during the primary commuting period. The off-peak period has an

insignificant VOT and a very high VOR of over $40/hour. However, the confidence intervals

are relatively large and the estimates in part are driven by the insensitivity to the toll in

the off-peak period. Drivers that use the toll during off-peak periods may purchase the toll

under a commercial account, which would explain the low sensitivity to the toll rate.

Breaking down the heterogeneity further panel (b) presents the means and confidence

intervals for VOT and VOR based on column (4) of Table 3 that interacts price, time

savings, and reliability with both direction and peak period. Focusing on the peak period

shows that drivers in the morning commute to work (NB) value reliability over time savings

while drivers returning home (SB) prefer time savings. This is intuitive given that drivers

need to get to work on time and they just want to return home quickly.

The heterogeneity also suggests that transportation managers can optimize the toll al-

gorithms for HOT lanes based on simple observable differences in usage behavior. Drivers

that value reliability may not be as sensitive to the toll rate and will purchase HOT access

at a wide range of prices. Conversely those who value time savings may be more sensitive

to the toll rate and traffic conditions when deciding to use the HOT. However, since time

savings and reliability are correlated a more detailed analysis is required to investigate the

relationship between VOT, VOR, and price elasticity.
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Figure 8: Value of Time and Reliability Heterogeneity
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Notes: The thick bars are the mean value of time and reliability and the thin error bars represent boot-
strapped 95% confidence intervals. Panel (a) is based on the regressions in columns (1) - (3) of Table 3
and Panel (b) is based on column (4) of Table 3. The horizontal axis shows the estimates based on the
main parameters (price, reliability, and expected time savings) as well as interactions with either direction
and congested period (Panel (a)) or the double interactions of the main parameters with both direction and
congested period (Panel (b)).
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4.3 Aggregate Welfare Effects

Combining the VOT and VOR estimates with the realized time savings and improvements

in reliability produces aggregate welfare estimates for the HOT users on SR167. The welfare

estimates focus on the dollar value of time savings and reliability for those that purchase

access to the HOT lane and omits other attributes of the toll, such as reducing the dis-

utility of being stuck in traffic or improved safety. Thus, the estimates presented should be

considered lower bounds of the benefits to HOT drivers. Our base specification produces

aggregate benefits of $2.3 million, which is roughly equivalent to the revenue generated by

the toll during this period. 80% of the benefits come from improved reliability, with only

20% due to travel time savings. Examining heterogeneity in the aggregate effects shows that

the vast majority of benefits are due to improved reliability during the morning commute

period. The welfare estimates exclusively focus on the benefits to SOV drivers purchasing

access to the HOT lane. WSDOT claims (WSDOT, 2012) that during the sample period

HOT lane usage increased while maintaining 45 MPH over 99% of the time so there are

unlikely to be negative impacts on HOV users and public transit riders. Additionally, GP

speeds increased during peak periods according to WSDOT. WSDOT’s estimates should not

be interpreted as causal impacts of HOT implementation on traffic on SR167, but if the GP

lane experiences improvements in reliability and decreases in travel times then substantial

benefits will accrue to drivers on the GP lanes. However, since HOT users are wealthier on

average we caution the extrapolation of VOT and VOR parameters from HOT users to the

GP lane.

5 Conclusion

The scale of congestion costs in the United States warrants new approaches to managing our

roads. In addition to alleviating congestion, better road management will decrease accidents

and reduce both local and global pollutants. A burgeoning approach to managing congestion
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is to introduce a HOT lane, either by converting existing HOV lanes or when adding new

road capacity. The use of new technology, such as real time congestion pricing, gives road

operators a powerful tool for managing congestion while at the same time collecting much-

needed revenue. While there has been applied work in the transportation literature, as well

as theoretical economic research on HOT lanes, there has been little empirical economics

research using revealed preference data on how consumers respond to HOT lanes. The

few studies using revealed preference data on HOT lanes have estimated a positive price

response that is inconsistent with economic theory. If higher prices actually cause drivers to

move into the HOT lane the basic premise of dynamically priced HOT lanes is flawed. We

provide evidence that prior results are due to a failure to address issues of serial correlation

and simultaneity inherent in dynamic pricing, as well as not accounting for the bundle of

attributes that HOT lanes deliver.

We employ a first difference estimation strategy to recover a negative price elasticity by

overcoming simultaneity in the dynamic pricing structure due to autocorrelation in travel

demand. The negative demand response enables us to jointly estimate the value of time and

reliability. We find a negative and substantial elasticity of approximately −0.21, indicating

that drivers do indeed reduce usage as the toll rate increases. The analysis of VOT and VOR

show that drivers primarily value reliability rather than time savings. There is heterogeneity

in VOT and VOR; drivers value reliability during the morning commute and time savings

during the evening commute. The aggregate welfare to HOT users on STR167 is estimated

to be $2.3 million, approximately the value of the toll revenues. The welfare estimate show

that there are large benefits to drivers from using HOT lanes. If the the GP lanes also the

benefit from decreased congestion due to traffic diverted to the HOT lanes the benefits may

be significantly larger.
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A Appendix

A.1 Trip Combinations

Figure A.1: SR167 trip combinations
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Notes: The horizontal axis indicates the entry gate and the colors designate exit gates. The number of
purchased tolls for each combination is on the vertical axis. The thickness does not convey variation in the
data, and is meant to properly space the figure.

A.2 Prices by gate
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Figure A.2: Price by Section
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Gate locations were determined using this tool.

North Bound:

• NB1 13.83

• NB2 15.10

• NB3 16.60

• NB4 18.61

• NB5 20.28

• NB6 22.90

• ends 25.09

South Bound:

• SB1 25.64

• SB2 23.70

• SB3 20.53

• SB4 18.99

• ends 17.03

A.3 Panel Data

Our data can be interpreted as a ‘pseudo’ panel in the sense that we repeatedly observe

usage at individual entry gates. Structured this way, N = 10 (six northbound plus four

southbound gates) and T = 1, 215, 000 (although T will vary according to different missing

data at different gates). ‘Pseudo’ panels such as we are proposing here are likely to violate

the dynamic homogeneity assumption underlying true panel data models (Im et al., 2003).

Understanding that the data might display dynamic heterogeneity informs our choice of

unit-root tests presented later in this section.

We employ three tests to explore the heterogeneity of our ‘pseudo’ panel based on Holtz-

Eakin et al. (1988); Holtz-Eakin (1988):
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1. an F-test for parameter equality from an Augmented Dickey-Fuller estimation with

third order lag (ADF(3)),

2. another F-test from a third order autoregressive (AR(3)) regression across all variables

and

3. finally White’s test for groupwise heteroskedasticity.

A rejection of the null in the F-tests indicates heterogeneity across parameters while a re-

jection of the null in White’s test indicates an inequality of variance. We performed White’s

test using a regression of the residuals from the ADF(3) regression on the original regressors

and their squares. The test statistic is (NT )∗R2 ∼ χ2, where the degrees of freedom are the

number of regressors from the second stage. Table A.1 presents the statistics, all of which

reject the null of parameter and variance homogeneity at the 1% significance level.

Table A.1: Dynamic Heterogeneity Tests

Test White ADF AR
F Statistic 261017.62 2037.24 1018.45
Notes: White’s test tests the equality of variance, the ADF(3)
and AR(3) test for parameter equaltiy across an ADF and AR
equation respectively. The number of obserations is 1, 282, 349

Given parameter and variance heterogeneity we employ two unit root tests for panel data:

that developed by Im et al. (2003) and a cross-sectionally augmented version of Im et al.

(2003) proposed by Pesaran (2007). We begin with the following formula:

yit = αi + βiyi,t−1 + εit (3)

where i = 1, . . . , N for each gate, t = 1, . . . , T represents the time periods and yit represents

each series in the panel. The traditional panel unit root test developed by Im et al. (2003)

fits the following ADF equation

∆yit = αi + βiyi,t−1 +

pi∑
j

ρij∆yi,t−j + εit (4)

36



where pi is the number of lags (here three). This is estimated for each variable in the panel

across each cross section. A ‘t-bar’ statistic is formed as the average of the individual cross

sectional ADF(3) statistics according to the following equation

t-bar =
1

N

N∑
i=1

tρi (5)

The null is that each series in the ‘pseudo’ panel contains a unit root. Rejection of the null

indicates that there is no unit root in any cross sectional series. Im et al. (2003) show that

the statistic is normally distributed under the null and provide critical values for given N

and T . The t-bar for each series is presented in Table A.2 and reject the null of unit roots

at about the 1% significance level.

This traditional Im et al. (2003) unit root test can be modified to account for cross-

sectional dependence. Pesaran (2006) shows that the effects of unobserved common factors

in panel data can be eliminated by filtering the cross-sectional mean. Extending this work to

unit roots in Pesaran (2007) leads to the following cross-sectionally augmented DF (CADF)

regression

∆yit = αi + βiyit−1 + γiȳt−1 + δi∆ȳt + εit (6)

where ȳt is the cross-sectional mean. The t-statistics on the β coefficient are estimated from

each unit i of the panel, with the average forming the CIPS statistic

CIPS = t-bar
1

N

N∑
i=1

tβi (7)

Results from the tests are presented in Table A.2 and indicate there are no unit roots in

the series.
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Table A.2: IPS Panel Unit Root Tests

Variables ADF ADFtrend CADF CADFtrend
Count -56.67 -56.79 -57.55 -57.69
Price -45.67 -45.80 -42.48 -42.51
Volume After Gate -56.25 -56.97 -60.10 -64.28
Speed Before Gate -68.20 -68.25 -68.55 -68.92
Speed at Gate -56.74 -57.07 -61.90 -62.54
Speed After Gate -63.15 -64.50 -66.17 -69.22
Value of Reliability -40.68 -40.68 -28.83 -28.83
Expected Time Savings -29.38 -29.38 -15.53 -15.51
Proportion -59.75 -61.07 -61.84 -64.23
Notes: All tests are conducted using three lags. Columns with ‘trend’ include an individual
time trend in the regression. All tests reject the null of an unit root at greater than 1%
significance. Total number of observations is 1, 282, 349.
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